SAFETY GUIDELINES TO FOLLOW WHEN WORKING ON VEHICLES

DO NOT
- DO NOT smoke when working on fuel systems.
- DO NOT use the Fuel Pressure Tester Kit on diesel or flex fuel engines.
- DO NOT connect or disconnect fuel system fittings with the ignition on.
- DO NOT lay tools on the vehicle battery. A short may occur, causing damage or personal injury.
- DO NOT leave the vehicle unattended with the engine running or while performing tests.
- DO NOT allow unauthorized personnel in the test area.
- DO NOT allow test hoses or test instrument harnesses to lie near engine cooling fan, exhaust manifolds, etc.
- DO NOT work on fuel systems where a flame or spark could be present. This includes furnaces, space heaters, exposed spark plug wires, etc.
- DO NOT allow fuel to spill on hot engine parts. If a leak or spill develops, turn off ignition, disable fuel pump, and clean up spill immediately. exposed spark plug wires, etc.
SAFETY GUIDELINES TO FOLLOW WHEN WORKING ON VEHICLES

DO

- Wear approved eye protection.
- Refer to the manufacturer’s vehicle service or repair manuals for specific information regarding pressure testing values, procedures, and test port locations.
- Follow all manufacturers’ cautions, warnings, and instructions.
- Keep clothing, tools and yourself away from hot or moving engine parts.
- Clean fuel system connections before loosening. Dirt in the system could result in damage.
- Wrap a cloth around fittings when loosening to prevent spray or spilling of fuel.
- Provide proper ventilation of gasoline and exhaust fumes.
- Use hose clamps on all hose adapters.
- Make sure quick-disconnect couplers snap together fully and there is no fuel leakage.
- Make sure the battery is fully charged, and the vehicle has an adequate supply of fuel.
- Use two wrenches to loosen or tighten fuel system connections to prevent damage or twisting of fuel lines.
- Check the general condition of the engine and fuel system. Check the fuel lines, ignition wires, battery cables, electrical wiring, and fuses. Check the fuel tank filler cap and the venting system.
- Carefully relieve residual fuel pressure per manufacturer’s recommended procedure.
- Have a dry chemical fire extinguisher on hand, and know how to use it.
FUEL INJECTION SYSTEMS - GENERAL INFORMATION

Automotive fuel systems and access points are so varied that it is not possible to list all of the test adapter applications. Always consult a reliable shop manual, or consult the car manufacturer for the recommended test procedure and connections.

There are two basic types of automotive fuel injection systems:

1. Port Fuel Injection (PFI) - Separate fuel injectors supply fuel to each cylinder.
2. Throttle Body Injection (TBI) – Fuel is injected from a point on the intake manifold above the throttle plate.

Both systems have a supply side, which provides fuel for the injectors, and a return side, which sends excess fuel back to the fuel tank.

There are three basic ways to check fuel system pressure:

1. Many domestic cars with PFI systems are equipped with a test port. Connect the proper test adapter to the Test Gauge, couple the adapter to the test port, and perform the test.
2. On some systems, an end-of-hose connection is necessary. Some PFI systems have a flexible hose connection. For this type of system, connect a single barb fitting with a hose clamp to perform the test. Other systems have a fuel bolt or banjo type fitting as an access point.
3. The third method of fuel pressure testing is in-line connecting. This method requires separating the fuel line and installing the Test Gauge and adapters in series.

Most manufacturers require that you relieve the fuel pressure before connecting to or disconnecting from the fuel system. To relieve the fuel pressure, it may be necessary to disconnect or disable the fuel pump. Some models may have two fuel pumps, and both must be disabled. After the fuel pump(s) are disabled, run the engine until it stalls, then try to restart it for three to five seconds. When the fuel system has been drained of fuel it is ready for testing. Connect the proper test adapters and the Test Gauge, reconnect the fuel pump and perform the tests. When the tests are finished, repeat the procedure to relieve the fuel pressure before removing the Test Gauge.
CHECKS TO MAKE BEFORE TESTING FUEL SYSTEM

The following items should be checked. Any faults that are found must be corrected before a proper fuel system test can be performed.

Check for loose or disconnected vacuum lines. Look for coolant or excessive oil leaks. Listen for any audible air leaks, unusual noises, engine rattles or knocks. Check valve timing and adjustment.

Electrical System

1. If engine won’t start, check for ignition spark. If no spark is present, service ignition system. The ignition fires the fuel injector on most systems so that if a spark plug is not firing, that cylinder’s injector will not be firing.
2. Observe Check Engine lamps or other computer fault indicators.
3. Look for broken, disconnected, or arcing ignition wires.
4. Look for disconnected distributor, or arcing cap or rotor.
5. Check for loose or corroded component grounds.
7. Check battery condition. A weak battery will affect proper fuel pump delivery or injector triggering. Battery voltage should be more than 12 volts.
8. Check basic operation of the charging system.
9. Look for loose or corroded battery cables.

Fuel System

1. Make sure fuel tank has sufficient fuel (do not rely on the fuel gauge).
2. Look for broken, loose, or corroded metal, rubber or plastic fuel lines.
3. Check for water or other contaminates in fuel.
4. Check condition of fuel system related fuses or solenoids.
5. Check condition of fuel tank venting systems.
6. Check condition of fuel tank filler cap.
7. On vehicles equipped with inertia switch, check and make sure switch has not been tripped.
1. Do not smoke.
2. Wear approved safety glasses.
3. Have a Class B dry chemical fire extinguisher nearby.
5. Disable the fuel pump. Follow the manufacturer’s recommended procedure.
 a. Some vehicles may have two fuel pumps. Both pumps must be disabled.
 b. A common method of disabling the fuel pump is to remove the fuel pump fuse.
 c. On some vehicles, removing the fuse also disables the fuel injectors or ignition system, so another method of disabling the pump must be used.
 d. On some vehicles, the fuel pump can be disabled by disconnecting the fuel pump wiring harness.
 e. On Ford vehicles equipped with an inertia switch, check that the switch has not been tripped. The inertia switch is usually located in the trunk.
6. Turn on the ignition and start the engine. If engine will not start, check ignition system for spark. If no spark is present, refer to the vehicle service manual for No Start Diagnostics.
7. Run the engine until it stalls.
8. Try to restart the engine for 3 to 5 seconds. For some Ford/Mercury/Lincoln vehicles with inertia-switch, engage the starter for 15 seconds to relieve fuel pressure.
9. Turn ignition off.
1. Refer to Figure 1, Typical Multi-Port Fuel Injection System With Test Port. With engine off, locate fuel pressure test port (Schrader valve) and attach the Test Gauge. If no Test Port is provided, residual pressure must be released before fuel system fittings are loosened. Connect the Test Gauge to the access point using the correct adapter. Always wrap a shop towel around the fitting before loosening.

2. If the adapter you need is a banjo bolt adapter, ours are designed for use with standard depth banjos. If a car manufacturer uses a non-standard banjo, more than one washer may be needed on either or both sides of the banjo. Our M12 x 1.25 banjo bolt adapter may need one or more thick or thin washers depending on the application.

3. Connect the Test Gauge into the system. Reactivate the fuel pump and start the engine.

4. Fuel pressure should rise to slightly above operating pressure and then stabilize at operating pressure, per the manufacturer’s specifications.

5. Check for leaks and repair as required.

6. If engine will not start, check ignition system for spark. If no ignition spark is present, refer to vehicle service manual for No Start Diagnostics.

7. If the system has an adjustable fuel pressure regulator, it should maintain system pressure while the engine is running. If a compensating fuel pressure regulator is used, fuel pressure may vary, depending on manifold vacuum.

8. Locate a flexible hose on the fuel return side and gently squeeze off return flow briefly. Never squeeze a steel braided or plastic hose. Pressure should increase rapidly.

CAUTION: Some fuel pumps can be damaged by this test. This test should not be performed unless recommended by the manufacturer.

CAUTION: Pressure could exceed 75 psi and may blow apart any loose fittings or defective lines or hoses. Observe the condition of fuel system components before performing this test.

9. If the pressure readings are acceptable, some manufacturers also require a flow test. If so, open the fuel system into a graduated plastic container and measure the flow rate. Consult a service manual for the acceptable flow rate. Close the fuel system.

10. Turn ignition off and observe the residual pressure. Some manufacturers specify a minimum holding time.
11. If you have an injector pulse tester you can test injectors one by one as follows: 1) Turn the ignition on. 2) Observe the fuel pressure. 3) Pulse one injector. 4) Turn ignition off. Move injector pulse tester to next injector and repeat test sequence. Continue test procedure on remaining injectors.

CAUTION: Do not repeat this test more than the manufacturer recommends. The engine may become flooded, or the oil can become contaminated.

12. Deactivate the fuel pump. With the ignition off, put the Test Gauge bleed-off tube in a disposal container and press the bleed valve on the hose to relieve the system pressure.

13. Remove the Test Gauge and reconnect all the fuel lines.

14. Start the engine and check for leaks.

15. Remove residual fuel from all Test Gauge hoses. If fuel remains in the Test Gauge hose, install any adapter in the test hose quick connect. Put the Test Gauge hose and bleed-off tube in a disposal container. Press the bleed valve on the Test Gauge. The fuel will drain into the container.

FIGURE 1

TYPICAL MULTI-PORT FUEL INJECTION SYSTEM WITH TEST PORT
TESTING TYPICAL TBI SYSTEMS

In some cases, to get the right combination of threads, multiple test adapters may have to be used. For TBI test pressures specifications, consult the vehicle service manual.

1. Deactivate the fuel pump(s) and relieve fuel system pressure.
2. Remove the air cleaner assembly.
3. On GM vehicles, temporarily plug the Thermac vacuum port on the throttle body.
4. Refer to Figure 2, Typical TBI Fuel Injection System. Using the adapters supplied, install the Test Gauge in-line somewhere between the fuel filter and the throttle body. If longer pieces of 3/8" hose are needed, cut from 3/8" fuel line hose. Use hose clamps on the hose.
5. If steel tubing is disconnected, use two wrenches to prevent damage.
6. On some vehicles it may be easier to put the car on a lift and test from underneath.
7. Reactivate the fuel pump, start the engine, and check for leaks.
8. When fuel pressure has stabilized, observe Test Gauge. Consult a service manual for the exact pressure reading required.
10. Remove Test Gauge and reconnect all fuel lines.
11. Start engine and check for leaks.
12. Remove residual fuel from all Test Gauge hoses. If fuel remains in the Test Gauge hose, install any adapter in the test hose quick connect. Put the Test Gauge hose and bleed-off tube in a disposal container. Press the bleed valve on the Test Gauge. The fuel will drain into the container.
13. On GM vehicles, remove the plug from the Thermac vacuum port.
14. Replace air cleaner.
FIGURE 2
TYPICAL TBI FUEL INJECTION SYSTEM

POSITION AND NUMBER OF FILTERS MAY VARY.
TESTING TYPICAL BOSCH C.I.S. SYSTEMS
The following C.I.S. tests can be made with this Test Kit:

- Cold Control Pressure – engine cold, test valve open
- Warm Control Pressure – engine warm, test valve open
- System Pressure – engine cold or warm, test valve closed
- Rest Pressure – engine warm, test valve open
- Fuel Delivery Rate

CAUTION: Adapters with o-rings should be handtightened only.

In some cases, to get the right combination of threads, multiple test adapters may have to be used.

For C.I.S. test pressures specifications, consult the vehicle service manual.

Preparation:
1. Relieve fuel system pressure.
2. Clean any dirt off the top of the fuel distributor.
3. Refer to Figure 3, Typical C.I.S. Fuel Injection System Test Gauge Connections. Hook up the Test Gauge between the fuel distributor and the control pressure regulator. The Test Hose without the flow control valve should be connected to the fuel distributor. The hose with the valve should be connected to the hose that was removed from the fuel distributor, or connected directly to the control pressure regulator.

To Test Cold Control Pressure:
1. The engine should be cold after standing several hours or overnight.
2. Disconnect electrical connector at warm-up regulator and auxiliary air valve.
3. Connect Test Gauge and open valve on Test Hose.
4. Remove the air from the system. Put the Test Gauge bleed-off tube in a disposal container. Activate the fuel pump, but do not start the engine. With the fuel pump operating, bleed until air is removed from system.
5. Start the engine and note pressure reading immediately after starting. Compare to manufacturer’s specifications.
6. If the Cold Control Pressure is not correct, the warm-up regulator may be at fault.
FIGURE 3
TYPICAL C.I.S. FUEL INJECTION SYSTEM TEST GAUGE CONNECTIONS

Tests Continued on Next Page
To Test Warm Control Pressure:
1. Reconnect wiring to warm-up regulator and auxiliary air valve.
2. Open valve on Test Hose.
3. Start engine and run for specified time.
4. Compare Warm Control pressure readings with manufacturer’s specifications.

To Test System Pressure:
1. Test can be performed with engine cold or warm.
2. Reconnect wiring to warm-up regulator and auxiliary air valve.
3. Close valve on Test Hose (closed valve eliminates control pressure.)
4. Start engine and run for specified time.
5. Compare System Pressure reading with manufacturer’s specifications.

To Test Rest Pressure:
1. Open valve on Test Hose.
2. With engine at normal operating temperature, energize fuel pump or start engine.
3. Turn engine off or disable pump when pressure reading stabilizes.
4. Compare pressure readings taken at specified time intervals with manufacturer’s specifications.
5. If the Rest Pressure drops too quickly, check for leaks at o-ring and fuel line connections.
6. If no external leaks are found, consult the service manual for causes of low fuel pressure.

To Test Fuel Delivery Rate:
1. If pressure testing finds no problems in the fuel injection system, the fuel pump should be checked.
2. Consult manufacturer’s specifications for the correct fuel volume and time period to test.
3. Hook up the Test Gauge for a pressure test and put the bleed-off tube into a graduated container.
4. Start the engine or activate the fuel pump.
5. Collect fuel in the container for the specified period of time. Compare the volume of fuel collected with the manufacturer’s specifications.
6. Turn off the engine or disconnect the fuel pump.

To Complete Testing:
1. Deactivate fuel pump. With ignition off, put Test Gauge bleed-off tube in a disposal container and press bleed valve on the Test Gauge to relieve fuel system pressure. The fuel will drain into the container.
2. Remove Test Gauge. Reconnect all fuel lines and any vacuum lines or wiring connectors that were disconnected.
3. Start engine and check for fuel system leaks.
ENGLISH / METRIC PRESSURE EQUIVALENTS

<table>
<thead>
<tr>
<th>psi</th>
<th>bar</th>
<th>kPa</th>
<th>kg/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.034</td>
<td>3.45</td>
<td>0.0352</td>
</tr>
<tr>
<td>1</td>
<td>0.069</td>
<td>6.89</td>
<td>0.0703</td>
</tr>
<tr>
<td>1.25</td>
<td>0.086</td>
<td>8.62</td>
<td>0.0879</td>
</tr>
<tr>
<td>1.5</td>
<td>0.103</td>
<td>10.34</td>
<td>0.1054</td>
</tr>
<tr>
<td>1.75</td>
<td>0.12</td>
<td>12.07</td>
<td>0.123</td>
</tr>
<tr>
<td>2</td>
<td>0.138</td>
<td>13.79</td>
<td>0.1406</td>
</tr>
<tr>
<td>5</td>
<td>0.345</td>
<td>34.47</td>
<td>0.3515</td>
</tr>
<tr>
<td>10</td>
<td>0.689</td>
<td>68.95</td>
<td>0.703</td>
</tr>
<tr>
<td>15</td>
<td>1.034</td>
<td>103.42</td>
<td>1.0545</td>
</tr>
<tr>
<td>20</td>
<td>1.379</td>
<td>137.89</td>
<td>1.406</td>
</tr>
<tr>
<td>25</td>
<td>1.724</td>
<td>172.36</td>
<td>1.75</td>
</tr>
<tr>
<td>30</td>
<td>2.068</td>
<td>206.84</td>
<td>2.109</td>
</tr>
<tr>
<td>35</td>
<td>2.413</td>
<td>241.31</td>
<td>2.4605</td>
</tr>
<tr>
<td>40</td>
<td>2.758</td>
<td>275.79</td>
<td>2.812</td>
</tr>
<tr>
<td>50</td>
<td>3.447</td>
<td>344.74</td>
<td>3.515</td>
</tr>
<tr>
<td>60</td>
<td>4.137</td>
<td>413.68</td>
<td>4.218</td>
</tr>
<tr>
<td>70</td>
<td>4.826</td>
<td>482.63</td>
<td>4.921</td>
</tr>
<tr>
<td>75</td>
<td>5.167</td>
<td>517.1</td>
<td>5.2725</td>
</tr>
<tr>
<td>80</td>
<td>5.516</td>
<td>551.58</td>
<td>5.624</td>
</tr>
<tr>
<td>90</td>
<td>6.205</td>
<td>620.52</td>
<td>6.327</td>
</tr>
<tr>
<td>100</td>
<td>6.895</td>
<td>689.47</td>
<td>7.03</td>
</tr>
</tbody>
</table>

PRESSURE CONVERSION FACTORS

<table>
<thead>
<tr>
<th>To Convert</th>
<th>To</th>
<th>Multiply By</th>
</tr>
</thead>
<tbody>
<tr>
<td>psi</td>
<td>kPa</td>
<td>6.8946</td>
</tr>
<tr>
<td>psi</td>
<td>bar</td>
<td>0.0689</td>
</tr>
<tr>
<td>psi</td>
<td>kg/cm²</td>
<td>0.0703</td>
</tr>
<tr>
<td>psi</td>
<td>in. H₂O</td>
<td>27.68</td>
</tr>
<tr>
<td>psi</td>
<td>in. mercury</td>
<td>2.0360</td>
</tr>
<tr>
<td>psi</td>
<td>cm. mercury</td>
<td>5.1715</td>
</tr>
<tr>
<td>kPa</td>
<td>psi</td>
<td>0.145</td>
</tr>
<tr>
<td>kPa</td>
<td>bar</td>
<td>0.01</td>
</tr>
<tr>
<td>kPa</td>
<td>kg/cm²</td>
<td>0.0102</td>
</tr>
<tr>
<td>bar</td>
<td>psi</td>
<td>14.504</td>
</tr>
<tr>
<td>bar</td>
<td>kPa</td>
<td>100</td>
</tr>
<tr>
<td>bar</td>
<td>kg/cm²</td>
<td>1.02</td>
</tr>
<tr>
<td>kg/cm²</td>
<td>psi</td>
<td>14.22</td>
</tr>
<tr>
<td>kg/cm²</td>
<td>kPa</td>
<td>98.074</td>
</tr>
<tr>
<td>kg/cm²</td>
<td>bar</td>
<td>0.9807</td>
</tr>
</tbody>
</table>
3 1/2", 0-100 PSI Test Gauge and Hose assembly with bleed-off valve. Provides a convenient method of purging air and relieving pressure after testing. Can also be used for observing volume of fuel.

CIS / TBI Test Hose – use when testing CIS or TBI systems where the in line connections are needed. Includes shut-off valve for both control & primary system pressure checks. The gauge hose should be used with CIS testing, to purge all air from the test gauge when running tests.
SCHRADER VALVE TEST PORT ADAPTERS

JC0180-1462 ----- Small Schrader Valve 90 Degree Adapter

JC0032-0128

Small Schrader Type Test Hose with .308” X 32 Thread
Common applications – Ford EFI.

JC0180-1463 ------- Standard Schrader Valve 90 Degree Adapter

JC0032-0127

Large Schrader Type Test Hose with 7/16” X 20 Thread.
Common applications include Chrysler, Jeep, and GM with test ports.
IN-LINE TBI ADAPTERS

JC0032-0130 ----- Connecting Hose

JC0180-1444 ----- 5/8"-18 to M16 Union

JC0180-1443 ----- Female M14 to 3/8" Tube

JC0180-1442 ----- Female M16 to 3/8" Tube

JC0180-1445 ----- M14 with O-Ring to 3/8" Tube

JC0180-1454 ----- M16 with O-Ring to 3/8" Tube

JC0180-1453------- Bent Tube with 5/8" Flare Nut to M16 with O-ring

JC1000-5061 ----- Straight Flared Tube with 5/8" Flare Nut

JC0180-1441 ----- Bent Tube with 5/8" Flare Nuts

JC1000-5062 ----- Hose Clamp Kit

JC0180-1459 ----- M12 X 1.25 Banjo Bolt
IN-LINE - C.I.S., C.I.S.-E, & K-JETTRONIC ADAPTERS

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>JC0180-1457</td>
<td>M8 Banjo Bolt with Washer</td>
</tr>
<tr>
<td>JC0180-1458</td>
<td>M10 Banjo Bolt with Washer</td>
</tr>
<tr>
<td>JC0180-1460</td>
<td>M12 X 1.5 Banjo Bolt</td>
</tr>
<tr>
<td>JC0180-1451</td>
<td>M10 Male to M12 Male</td>
</tr>
<tr>
<td>JC0180-1445</td>
<td>M8 Female to M12 Male</td>
</tr>
<tr>
<td>JC0180-1446</td>
<td>M10 Female to M12 Male</td>
</tr>
<tr>
<td>JC0180-1450</td>
<td>M8 Male to M12 Male</td>
</tr>
<tr>
<td>JC0180-1452</td>
<td>Long M8 Male to M12 Male</td>
</tr>
<tr>
<td>JC0180-1461</td>
<td>Long M8 Female to M12 Male</td>
</tr>
</tbody>
</table>

JC0032-0129
Connecting Hose & Valve Assembly
IN-LINE SPECIAL ADAPTERS

JC0180-1449 ---- Manifold with Quick Connect

JC0180-1448 ---- GEO / Isuzu Adapter

JC1000-5060 - Ford CFI Hair Pin Hose Adapter

JC1000-5059 - Ford EFI Spring Lock Hose Adapter

JC1000-5058 - Volvo Adapter Set

JC1000-5063 - 3/8” Hair Pin Hose Assembly

JC1000-5064 - 5/16” Hair Pin Hose Assembly
END-OF-LINE AND BANJO BOLT ADAPTERS

JC0180-1464 --- Single End Hose Adapter

JC0180-1440 --- Quick Connect Plug to 1/4” Hose

JC0180-1456 --- M6 Banjo Bolt with O-ring

JC0180-1457 --- M8 Banjo Bolt with Washer

JC0180-1458 --- M10 Banjo Bolt with Washer

JC0180-1459 --- M12 X 1.25 Banjo Bolt

JC0180-1460 --- M12 X 1.5 Banjo Bolt

JC0180-1447 ---- M14 X 1.5 Banjo Bolt